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An X-ray Study of x-Keratin. I. A General Diffraction Theory for Convoluted
Chain Structures and an Approximate Theory for Coiled-Coils

By A.R. Lanc*
Philips Laboratories, Irvington-on-Hudson, New York, U.S. 4.

(Recetved 10 June 1955)

A fibre structure is examined consisting of a periodic distribution of electron density along an
infinite line which is folded or coiled in space in a pattern arbitrarily complex but repeating
regularly along the fibre axis. The electron-density distribution on the spiral is expressed as a
Fourier series, periodic in the distance measured along the line, and the same holds for each of the
cartesian coordinates of a point of the spiral. The expression for the structure amplitude on any
layer can be written as a product of Fourier coefficients of these four series. The approximate
theory for the coiled coil regards the compound helix as a minor helix deformed with the periodicity
of the major helix, the scattering contribution of each turn of the minor helix being thereby modu-
lated in phase and amplitude. The diffraction pattern of a three-strand cable composed of «,
helices has been calculated in the region of meridional spacing 6-1-4*7 A and shows qualitative
agreement with the observed poreupine-quill pattern.

Introduction

Pauling & Corey (1951a) proposed a structure for
a-keratin consisting of «x-helices packed together in
alignment with the fibre axis, and Perutz (1951)
pointed out that the observation of a relatively strong
meridional 1-5 A reflection in materials such as horse
hair and porcupine quill gave strong support to this
idea. On the other hand, the projection on the fibre
axis of the electron density of the «-helix shows no
periodicity corresponding to the helix repeat distance,
and so the strong meridional arc at 5-18 A, charac-
teristic of the a-keratin pattern, cannot be explained
by the simple model of x-helices in parallel array. The
way out of this difficulty was shown in principle by
Crick (1952) and Pauling & Corey (1953), who sug-
gested that the x-helix axis was inclined to the fibre
axis and itself followed a larger helix. It is easily seen
that the projection on to the fibre axis of such a
coiled-coil structure possesses a periodicity corres-

* Now at the Division of Engineering and Applied Physics,
Harvard University, Cambridge 38, Massachusetts, U.S.A.

ponding roughly to the x-helix repeat, and hence will
give some approach to the observed meridional dif-
fraction pattern. The apparently complex calculation
of the diffraction pattern of a structure containing
coiled-coils can be much simplified by regarding the
structure as a grating composed of a repetition of
single turns of the minor helix (i.e. the x-helix) with
a superimposed modulation in scattering amplitude
and phase, the modulation wavelength being the major
helix axial-repeat distance. On this basis the writer
has derived a simple approximate theory for the rapid
calculation of the meridional and near-meridional dif-
fraction pattern of coiled-coils assembled in multi-
strand cables. An exact theory for the calculation of the
whole diffraction pattern of coiled coils has been
developed independently by Crick (1953a).

The present paper describes a general diffraction
theory applicable to fibres consisting of atomic chains
folded in arbitrarily complex fashion. This reduces to
Crick’s formula as a special case. An account is then
given of the approximate theory. It is compared with
the exact theory, and applied to calculate the diffrac-
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tion pattern given by a three-strand cable of x-helices
in the region of the 5-18 A meridional arc.

General diffraction theory for convoluted chains

In this discussion a chain structure will be defined as
a periodic distribution of electron density along an
infinite line. Thus, if a parameter ¢ is taken as propor-
tional to the distance along the line, the variation of
scattering power along the line, measured in appro-
priate units, may be represented by the Fourier series

4, = X o,exp (—2miptft,),
p=--00

where t,, is the value of ¢ after which the distribution
repeats. In the convoluted chain structure the infinite
line is subjected to a three-dimensional coiling and
folding of any complexity provided that after ¢ in-
creases by a finite amount £, the configuration repeats.
Take any point on one such convoluted line as origin,
and let the direction joining this point with another
on the line differing from it by ¢, in ¢ value define the
z axis of a rectangular coordinate system. Usually the
direction of the z axis so chosen will be coincident with
the fibre axis. In the possible case of a fibre composed
of a web of several differently convoluted chains, the
structure may be reduced to one form of chain by
combining segments of chains of different forms so
that the whole configuration is made to repeat in the
direction of the fibre axis.

For the line passing through the origin let ¢ have
there the value ¢ = 0, and let 2z =z, at ¢ = £,. Then
the constant e = z./f, measures the average rate of
progression of 2z with ¢. The periodic variation of the
z, y and z coordinates due to the convolutions can
always be represented by Fourier series, most con-
veniently in the form of sine and cosine series. Thus,

[oe]
z = X (a, cos 2mut[ty+b, sin 2nutft,) ,
=0

U
o0
y = X (¢, cos 2mut[ty+d, sin 2rutfty) , (1)
u=0

z

o
et+ 3 (e, cos 2mut[ty+ f, sin 2mut(ty) .
u=0

It should be remembered that these series are not
independent, since at every point on the line we have
Adt? = da?+dy*+dz?, A being a constant.

The transform of the convoluted chain at the point
(&, m, ¢) in reciprocal space is

o0

A, exp 2nifxé+yn+2(]dt .

—00

(5, 8) = S

Putting &%2+#% = R?, tan p = /&, o = 2nutft,, and
substituting for z, y and z from equations (1), this
becomes

ACo
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+o00o oo
TR,y ()= § A, exp [2m’R{%‘l(aucosw cos Y

¢—

+b, sin w cos y+c¢, cos w sin p+d,, sin w sin w)}]

X 6XPp [2ni§ { E (e, cos w+f, sin w)}} .exp (2nietl)
u=1

x exp [27i(Ra, cos y+ Rcy sin p+Le,)]df .
This may be written for short

40
Ay.Ap. A;.exp (i0) exp (2mietl)dt ,

—0o

T(R.y.0) =

where 6 = 2n(Ra, cos p+ Rc, sin y+(ey) and Ap and
A, are the other terms involving R and {, respectively.
Ay and A, may be separated into factors, giving

Ap = exp [2752'133‘ 3(a,+d,) cos (w-tp)}
u=1
X exp [2m’R > Ya,—dy).cos (w-:v-ip)]
u=1
X X [2m'R > 3(b,+¢,) sin (w+1,v):|
u=1

X eXp [2m’R 2 4(b,—c,) sin (w—zp)]
u=1
=A4,.4,.4,.4,,
and

[o 0]
A, = exp [271@'4‘ > e, cos w]
u=1

X eXP [2m'C > fysin w] =A;.4,.
w=1

Each factor 4,(¢ =1,2, ..., 6) is expressible as the

limit of .an infinite product of infinite summations

with the aid of the relations

exp (v cos ) = Zo,'o J (V) exp mi(0+ )

and

E I vy exp mi § .

m=—oo

exp (fv sin 0) =
Thus the expressions for 4; become

4 =11 3 [UnfniBlo,+d))
x exp {im(2mutfty—yp+im)}] ,
Ay=I 3 [TndrniR(au—du)}

xexp {im (2nutfty+yp+3in)}],

e
o«
I

=8

Mg
<
3

3

5
=
*

+
<
N

x exp {im (2mutfty—y)}] ,
20
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Ay = i.; Zo,o' [J m(27vile,) exp {im (2mut[ty+47)}]
u=1 m=—00
and
Ag=I1 2 [Jn2nmilf,)exp {im (2mut(ty)}] -

|

u=1 m=—00

The transform of each A; is the convolution of the
transforms of the m-summations computed for every
value of ; and the required transform of the product
of all the factors 4;(: = 0,1, ..., 6) is the convolu-
tion of the transform of each A4;. Evaluation is simple
because every term is either constant, or periodic with
repeat t, or ¢, and so its transform reduces to a set of
Fourier coefficients. Consider 4,, for example: the
integral giving the transform of one term of the sum-
mation for a particular value of u is
a00

T, (u, m) = 5 I n{miR(a,+d,)}

xexp {im(2mutfty—y+{m)} exp (2nietl)dt
and is non-zero only when [+um/fely = 0; at each

such value of ¢ it becomes the Fourier coefficient
Fy(u,m) = J ,{miR(a,+d,)} exp {im(}n—v)}. Likewise,

+oo
T, =S A4, exp (2mietl)dt is non-zero only when

‘t+plet, = 0, at which values of { it reduces to the
Fourier coefficients F, = g,. Provided that ¢, and ¢,
are not incommensurable the whole structure repeats
after a length ¢, = Mt,, = Nt,, M and N being integers
having no common factor. The z-axis repeat distance
is given by ¢ = &t;, hence um/ety = Num/c and p/et,, =
Mp|c. The transform T(R, v, {) is then non-zero only
when ¢ = l/c, [ being an integer or zero. The structure
amplitude for the layer of index  is thus given by the
products of coefficients

F(R, p, lc)
== Qp_;I ;; g‘ Fi(u(@), m(@i, w) exp (z6) , (2)

i=1 wi)=1 m(s,u)=—00

subject to the conditions

6 oo
I+ Mp+N3 3 u@)m@,u)=0. 3)
i=1 u(f)=1

The coefficients are

Fy(u(l), m(1, %)) = I mqa, {78 B @y +dum) }
xexp {im(1, u) (dm—vp)},
Fy(u(), m(2, ) = o,y R @0y~ )}
x exp {im(2, u)(3n+y)},
Fy(u(3), m(3, #)) = Iz, i R(bugzy+Cus)}
x exp (1m(3, u)y) , (4)
Fy(u(4), m(4, %)) = T ng, {70R (buiay—Cuia)) }
x exp (—im(4, u)y),
F5(u(5)’ m(5’ u)) = Jm(s,u)(Qni (l/c)eu(S))
x exp (tm(5, u)3n),
Fe(’“(ﬁ); m(8, u)) = Jm(s,u)(2757:(l/0)fu(s)) .

AN X-RAY STUDY OF «-KERATIN. I

Each order m and harmonic % has been tagged, as
shown in equations (2), (3) and (4), in order that the
terms contributing to a given layer may be identified.
The coefficients g, will in general be complex. Two
special cases of interest are (i), electron density con-
stant along the wire, in which case all g, are zero
except gy, and equation (3) reduces to

6 o0
+2 2 u@)m(, u)=0;
i=1 u(@)=1

and (ii), electron density concentrated in points spaced
t,, apart, one such point being at ¢ = ¢;, in which case
0, = C exp (—2mnipt,[t,), where C is a constant.

Expression (2) gives the structure amplitude for
one convoluted chain. If the structure contains dif-
ferent types of convoluted chains their scattering
amplitudes must be calculated separately. A simpler
procedure may be employed when all the chains are
similar; in this case a common parameter { may be
used for all chains and the Fourier coefficients a, b,
etc. will remain unchanged if the periodic variations
of the z, ¥y and z coordinates of the jth chain are ex-
pressed as Fourier series in £—¢,. Additional generality
and convenience are obtained if the equations (1) are
put in the form

o0
r = z;+ 3 [a, cos (2mut/ty— @y)
u=1 +b, sin (2mutfty— ;)]
oo
y = yrt = oy cos (2mutfto—pu) (5)
u=1 :
+d, sin (2nut/to—<}9u;‘)] >
o0
z = et+z;+ 3 [e, cos (2mutfty— @)
=1
v +f, sin (2nutfty—@y)] -

The coefficients F,, ..., Fg given by equations (4)
must now be multiplied by exp (—img,;), and the
phase factor in equation (2) becomes exp (id;) with
d; = 2n(Rx; cos yp+ Ry, sin p+ (/c)zy).

As an example of application of the foregoing theory,
the structure amplitudes for a discontinuous coiled
coil may be calculated, using Crick’s (1953a) model.
The coordinates of the major helix are

Z = 74 €08 (wot+@,) »
Yy = 7y sin (wel+@y) , (6)
z = P(wet/27)+2, ;

and those of the minor helix in its own rotating frame
of reference are

x' = r; cos (wyt+¢y),
y' = rysin (o +¢y), (7)
2 =0.
The major helix, which is right-handed, makes N,
turns while the minor helix (left-handed) makes N,

turns in its own frame of reference, in the same
z-distance ¢. This condition makes —w,/wy = N,[N,.
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There are M point atoms in the repeat ¢, thus ¢, =
ty = Mt,. One atom is at t=t;, so g, = Cexp(—ippy)
where @, = 2nMt,[t,. The coiled-coil coordinates are

x = 1y €08 (et +@,)
+7y cos [wgt (N1/Nog—1)t—@y—@;]
+4 cos [wgt(N/No+1)+@o—@1] ,
Y = 1o sin (wol+ @)
—Fy sin [wot(N1/No—1)t—@o—¢4]
+4 sin [wgt(N;/No+1)+@o—@,] ,
z = P(wgt[27) +2z+7; 8in o sin [wet(N,/Nog)—@4] ,

in which tan &« = 2n7y/P, 7, = 3r;(1+cos «), and 4 =
$r,(1—cos «). Identifying the above coordinates with
the general coordinates of equations (5) enables the
Fourier coefficients a,, b,, ¢,, etc. to be written down
by inspection. It is seen first that e = @ P/27, c = NP
and ¢, = 2nNyjw,, so that 2nutlt, becomes wyut/N,.
Only four harmonics are active: these are w = N,,
N,—Ng, N,, and N, +N,. It is convenient to tabulate
the coefficients as shown (Table 1).

Table 1. Fourier coefficients of coiled coil.
N,—N, N, N,+N,
24

% = N,
ay+dy 27,
ay—dy
by+tcy
by—cy

Coefficient F:
Coefficient F,:
Coefficient Fl:
Coefficient F,:
Coefficient Fyg: ey
Coefficient Fyg: fy
Phase: Pu

27,
. "

(@14 o)

R
LTI

[¢ 2

—®o 1 (P1—®o)

.em

Substituting the coefficients from Table 1 in equa-
tions (4) the series become,*

2F = (N%‘ S maigy (27 Brg) exp [tm (No) (37— +¢,)]
m(¥g)=—00
XN +1%;— Jm(N1+N0)(27tRA)
== x exp [im(Ny+No) (3m—p—@1+@o)]

2F2= Z

m(Nl—N0)= ~—00

x exp [im(N1—No)($m+yp—@1—@o)l

Jm(Nl—-No) (27Z.R;1)

and

2k = 20,‘0 I mwrp (27 (lfc)ry sin &) exp [—im(N;)g,] .
MmN =—0

The phase factor exp (id) is exp (2milzy/c). In order to
bring the notation into line with Crick’s put p = m/,
m(Ny) = —p, m(N,—No) = —¢q, m(N,) = —s, and
m(N,+DN,) = —d. The expression for the structure
amplitude then becomes

* Note that according to the notation adopted above in
equations . (2), (3), (4), m(N,—N,), say, does not signify
mX (N;—N,), but that the m belongs to the series whose
harmonic u is N;—N,.
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F(R, y,l[c)=C 53 3 3 J (27 Rry)

P=—00 g=—00 §=—00 d=—00
xd (2 RFy)J (27 (l[c)ry sin ) 4(2w RA)
xexp [tp(p—@o+37) +ig(—p+@o+ @1 +§7)
+i8(+@1) +id (P+ @y —@o+37) —im @ 3+ 27ilzy ]
(8)

subject to the conditions
Nop+(N;—No)g+Nys+(Ny+Nos = I+ Mm" . (9)

These equations are identical with Crick’s equations
(13) and (14) if the constant C is put equal to unity,
except for the phase angles multiplied by ¢, s and d.
The discrepancy in the latter has been traced to an
error in Crick’s derivation of his coiled-coil coordinates
from the major and minor helix coordinates (6)
and (7).*

It is thus seen that if the z, ¥ and r coordinates of
the convoluted structure can be expressed in such a
way that the various multiples of the fundamental
periodicity can be readily picked out, the expression
for the structure amplitudes on any layer can be
written down without further calculation.

Approximate theory for coiled coils

If the «-helices in «-keratin are coiled into super-
helices it is unlikely that the angle between the x-helix
axis and the super-helix axis (i.e. the fibre axis) is
large: the diffraction evidence suggests that it is about
10°. This angle, denoted by «, has been termed by
Crick the ‘pitch angle’. However, in the conventional
description of helices, such as screw-threads, the term
‘pitch angle’ is used for the angle made by a tangent
to the helix with the plane normal to the helix axis,
and is thus the complement of «. With «-keratin,
where « is small, no confusion is likely to arise, but this
is not the case with structures in which the «-helices
are coiled into relatively flat super-helices. It is there-
fore here proposed that the angle «, which measures
the instantaneous angle of tilt of the minor helix axis
away from the major helix axis, be called the ‘tilt-
angle’.

The most detailed diffraction patterns of x-keratin
available show discrete reflexions only on the equator
and in the meridional and near-meridional region. On
the equator itself (but not in the near-equatorial
region) an adequate calculation of the diffraction
pattern of coiled coils may be made with the assump-
tion of cylindrical symmetry. The restriction of the
remainder of the diffraction pattern of interest to the
near-meridional region, together with the basic notion
that the x-helix is but little distorted when it 'is de-
formed into a coiled coil, provide the physical justifica-
tion of the approximate diffraction theory described
below.

* The writer wishes to thank Dr Crick for the loan of his
original calculations.

20+
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It will be assumed that all the «-helices are of the
same sense and that they try to pack together so that
side-chains of one helix fit into spaces between side-
chains of another helix. This is the concept of ‘knobs’
fitting into ‘holes’ as proposed by Crick (1952, 1953b).
In the general case, if the number of residues per turn
of the x-helix is not exactly 4n, where % is an integer,
the «-helices will have to deform themselves into
coiled coils in order for fitting to occur. It is to be
expected that several coiled-coils will combine to form
a multi-strand cable. How is this deformation best
described geometrically ¢ Consider the simple case of
a pair of «-helices of the same sense (left-handed) and
having 36 residues per turn. Part of one turn of each
x-helix is represented schematically in Fig. 1(a), (b),

>

%

(a0

Fig. 1. The deformation of «-helices into coiled coils. (a) A
level with knob—hole fitting; (b) one turn higher, no defor-
mation and no fit; (c) the same level as (b), with the defor-
mation required to give knob-hole fitting.

(¢)- An opaque semi-circle represents a knob, an open
semi-circle, a hole. In Fig. 1(a), a knob on the helix
whose axis is 4 fits into a hole of the helix whose axis
is B. Now consider the fit at one helix-repeat higher.
As shown in Fig. 1(b), a knob-hole match no longer
occurs. A good fit may be restored by giving each turn

of each helix a small translation without rotation. A" is
translated to 4", and B’ to B”, the angle between
A’B’ and A" B" being approximately 10°. The defor-
mation given to each turn may be considered either
as & small shear on horizontal planes, in a direction
normal to the line joining the minor to the major helix
axis (which in this case is the mid-point of AB), or as
a tilt of individual turns so that their axes follow 44"’
rather than AA4’, and BB" rather than BB’, at this
particular level. The latter description is more con-
venient. It implies a discontinuous deformation of the
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«-helix once per turn; whereas, if the deformation
takes place by rotation about the «-carbon-atom
bonds, which can be regarded as forming a universal
joint connecting the planar residues, it is distributed
over 3-6 points per turn of the helix, and thus ap-
proaches a continuous deformation. The difference
between these two models is not significant since the
deformation is small. In the model adopted here, each
turn, with its 36 residues, retains its physical identity
and orientation in space except for the introduction
of the small tilt. This model has the advantage over
Crick’s model involving two coordinate systems in
that it permits a smooth passage from an «-helix with
straight axis to either a right-handed or left-handed
coiled coil, depending upon whether there are more or
fewer than 3-5 residues per turn, respectively.

1z H(j.u)
Q
A )
I N
An O N -

c S\AH()0)

R(0,1) /
A RN\ 8B|,.

H(0,0)A @ o

X

Fig. 2. Cartesian and cylindrical-polar coordinate systems for
. coiled coils.

In the case considered here of a coiled coil formed
of a left-handed minor helix and a right-handed major
helix, it can be seen that when the minor helix crosses
the line joining the minor helix axis to the major helix
axis its slope is at a minimum, and its projection on
the major helix axis has maximum density. It is con-
venient to take the origin of the major helix at one such

‘node. Thus, referring to Fig. 2, if Oz is the axis of the

major helix 44%, the axis Oz is chosen so that 4, C
and O lie on the same straight line, AC pointing
towards O. The turn of the minor helix to which C
belongs is designated H(0, 0) and its scattering power
considered lumped at its origin A. Similarly the scat-
tering power of the next minor helix above, H(0, 1),
is considered concentrated at A4’; AA’ = A’A"”, etc.
The point €’ is one turn of the minor helix up from C,
and A'C' lies in a vertical plane parallel to AC. The
radius of the major helix is A0 = r,. Consider, next,
another coiled coil. Assume that this has the same axis
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Oz, radius ry and tilt-angle «. It is desirable to choose
its origin at a recognizable physical feature of one
turn of its minor helix, i.e. a node. Let this origin be
at the point B, where BD lies on the perpendicular
from Oz. If this is the jth coiled coil with Oz as axis
the minor helix whose scattering is considered con-
centrated at B may be designated H(j, 0). The co-
ordinates of H(j, 0) are (ry, @;, 2;). Let the assemblage
of coiled-coils have a z-axis repeat distance c. If P is
the vertical repeat of a major helix and p that of
a minor helix (i.e. 44’ projected on Oz), then ¢ =
np = NP, where n and N are integers with no com-
mon factor. The scattering power of the uth minor
helix of the jth major helix, concentrated at the point
H(j, u), may be denoted by A(j, ). The coordinates
of H(j,u) are

T, = 7 COS @ = 7y co8 (T+¢;) ,
Yu =Ty 8in @ = 7y 8in (v+¢)) ,
2, = z;+up, where 1 = 2mupNjc.

The structure amplitude at the reciprocal-lattice point
(¢, 7, {) due to the » minor helices of the jth major
helix contained in the z-axis repeating unit is

u=n—1

F(j) = 2 A(j, u) exp [2ni (@€ +y,n+2,0)] -
u=0

In this expression one may put { = !/c, I being zero
or an integer, since spectra occur only at these values
of £. It is convenient to introduce the reciprocal-
lattice polar angle g, where { tan g = (£2+%2%)%, and
azimuthal angle v, where tan ¢ = /& Then the ex-
pression for the structure amplitude on layer ! be-
comes, on substituting for x,, y, and z,,

F(j,1) = X A(j, u) exp [2ni(lc)
¢ (ro tan g cos (y—o@) +2z;+up)] .
Since tan &« = 27r,N/c, the above expression may be
written
F(j,l) = X A(j, u) exp (2milz,fc) exp (2milup|c)
exp (¢(!/NV) tan « tan g cos (p—g)) .

Putting B = (1/N) tan « tan g, and making use of the
expansion

exp (ilB cos (y —¢)) = X J,(IB) exp [iv(y—g+in)],
r==—00
there is obtained

n—l_ oo

F(5,) = g‘ = A(j, u) exp (2nilzfe)
" coxp Qailupjop (LB) exp [in(p—p-+ 4]
Since ¢ = 27upN[c+q;, this may be written
F(,l) = zu 3 A(j, u) exp (2nilz;lc)J,(B)

x exp [27wi (up/c) (I—vN)] exp [iv(p—g@;+3n)] .
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The quantity A(j, u) is evaluated in the following
way. Consider reflection by a plane whose normal is
0Q (Fig. 2). In space reciprocal to one turn of the
minor helix (reciprocal coordinate axes O&’, Oy’, O’)
the plane normal OQ makes not the polar angle g,
but an angle greater or less than this depending upon
the orientation of the minor helix axis with respect
to OQ (Fig.3). As one turn of the major helix is

CI
/ < /F
/ D, /f % 4 Z
("
4
0 .
7
4
Fig. 3. The reciprocal-lattice construction in «-helix reciprocal
space.

described, 0@ will precess about the direction OS,
where OS has polar angle ¢ and the angle between
08 and 0Q is . The expression for the form factor at
reciprocal-lattice layer heights corresponding to the
minor helix repeat-spacing and submultiples thereof
is given by the simple formula of Cochran, Crick &
Vand (1952). The effect of the major helix modulation
is to split each layer into bands of closely spaced
layers. In practice only the first band is of importance
in the a-keratin pattern, i.e. that centred at { = n/c.
Since the minor helix transform varies slowly and
smoothly with { in this region, the convenient ap-
proximation is employed of using the form factor of
the minor helix first level to calculate the amplitudes
of all components of the band. The form-factor values
used are those lying round the curve traced out by @
as it precesses about OS on the first level C'D’E’F’
of the minor helix transform. Since the variation of
the form factor is cyclic, with a fundamental period
corresponding to one turn of the major helix, it can
be represented by a Fourier series periodic in 7. The
point ¢ describes an ellipse on C'D’E’F’ but at small
values of g it may be regarded simply as a circle
centred at §. This circle will be referred to as the
precession circle. Its radius for the case of p = 0 is
(nfc) sin x. The above construction is equivalent to
considering the axis O’ as fixed, parallel to Of, and
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Fig. 4. (a) The relative orientation of reciprocal-lattice layers of the coiled coil (0), and of one turn H(j, u) of the minor
helix of the coiled coil (j). (b) The rotation of S into §".

the plane normal OQ as varying in polar angle and
azimuth.
Thus, substituting for 4(j, ) the series

3 a(j, k) exp (—ikr) ,

k=—00

the expression for the structure amplitude becomes
F(j,1) = exp (2niz;(l/c)) ZZ%‘a(j, k)J,(IB)
X exXp [2niu(p/c)(l—]\;lv—ka)] exp [w(p—@;+in)].
This summation is non-zero only when
({-Ny—NEk)(plc) = m,

where m is an integer or zero, i.e. | = mn+Nv+NEk.
Introducing the integer u defined by u = v+k, the
structure amplitude contributed by the jth compound
helix to the layer I = mn+Ny is given by the ex-
pression

F(j,mn+Nu)=mnexp[2ni(mn+Nu)z;/c] 3,‘0 {a(j, p—v)

xJ,[(mn+Nu)B] exp [iv(p—@;+3n)]} . (10)

Hence, if the Fourier coefficients applicable to the

4th compound helix have been found, the value of F
is readily calculated by summing appropriate products
of these with Bessel coefficients. In the region of the
5-18 A meridional arc, m = 1. The argument of the
Bessel coefficient may be alternatively expressed.
Since tan & = 2nr,N/c and tan g = Rc/(mn+Nu), we
have (mn+Nu)B = 2nryR; and so computation is
simplified if F is calculated along lines of constant R
rather than constant p. It remains to show how the
coefficients a(j, u—v) are derived from a Fourier
series independent of j.

Fig. 4(a) represents a plan of a layer, axes C& and
Cn, of the compound-helix reciprocal lattice, together
with the corresponding layer of the transform of the
minor helix H(j, #) in the correct relative orientation.
From the definition of the origin of the jth compound
helix it follows that C’&’ is directed along BD (Fig. 2)
and so makes an angle #—q; with C§. According to
the construction shown in Fig. 3, when C'&’ and C'y’
are regarded as fixed in space, the point @ moves round
the precession circle centre S. Alternatively, when C§
and Cp are considered fixed, ¢’ moves round the pre-
cession circle having its centre at C, S and C'C being
equal and parallel. Fig. 4(b) shows C'S rotated back-
wards about €' so that it comes into the position C'§’,
lying along C'¢’, i.e. C'S rotated through the angle
—(7m+y—g;). Suppose T(Q’) is the value of the form
factor of the minor helix at @ and suppose that this
has been expressed as a Fourier series periodic in w,

T(Q") =k=:§ by exp (—tkw) .

The form factor at @, 7'(Q), (which is in fact A(j, »))
is required in terms of a Fourier series periodic in 7.
Now let Z(n+y—g;) be the factor by which 7(Q’)
has to multiplied in order to obtain 7'(Q). In the case
of the first-order helix-repeat layer of a left-handed
helix of radius », T(R', y’) = J,(2nR'r) exp i({n—7'),
by Cochran et al. (1952), and so Z(n+y—g;) is
exp [—i(m+yp—¢;)]. From Fig. 4(a) and (b) it is seen
that w = p—yp—34n = v+¢@,—4w—yp. The two Fourier
series are thus related by the identity

Zk'a(j, k) exp (—ikt) = R(n+yp—q;) Zk,' b, exp (—ikw);
hence a(j, k) = b; exp [i(k—1) (y—@;+37)] exp (—37).

This value of a(j, k) may now be substituted in
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equation (10) to find the structure amplitude in the
band m = 1 due to j compound helices in which the
minor helixes are left-handed: there is obtained

F(n+Nu) = 2 X nexp [2mi(n+Nu)z/c]b,, x
i v
Jy[(n+Nu)Blexp [i(u—1) (y—@;+im)] exp (—in). (11)

As a simple illustration of the above formula one may
calculate the intensity on the meridian at 5-18 A. AllJ,
are zero except Jo(nB), which is equal to unity. The
point 8’ is coincident with (', y'=w, Q'S'=(n/c)sin«x,
and so T(Q')=J(2nr(n/c)sinx)exp[i(}x—w)]. Thus
the only coefficient b, active is b,=J,(2nr(n/c)sinx)
xexp (¢47). Hence y = 1 only, and diffracted inten-
sity is observed on the single layer n+ N, the structure
amplitude being

F(n+N) = 2 nJ(27r(n/c) sin )
’ xexp [2mi(n+N)zfe] . (12)

This equation contains, as to be expected, no phase
factor involving y or ¢;. Since (n+XN)/c may be written
(1/p+1/P) the factor containing z; just expresses the
manner in which the degree of reinforcement of the
component compound helices depends upon how their
origin nodes are distributed over a vertical distance
which is the z-axis repeat between nodes of any one
compound helix. As pointed out above, the node is a
definite physical feature and so the z; coordinates of
any model are easily found.

Method of computation

Formula (11) enables the diffraction pattern to be
calculated in a number of steps which are independent
both from the physical and computational point of
view. The form factor of the x-helix (with or without
side chains) is calculated once and for all and plotted
graphically. When the value of &« has been decided
upon, a number of precession circles are drawn at
various values of R, and harmonic analysis of the
variation of 7'(Q’) round the circles is made by a
method such as that described below. Bessel coeffi-
cients and Fourier coefficients are conveniently in-
serted in spaces in a table of the form indicated
(Table 2); this makes clear which products contribute
to a given layer line. For example, the sole product

Table 2. Values of p—v

vy —4 -3 —2 -1 0 1 2 3 4
La.yer\
mN 44 4 3 2 1 0
mN+3 4 3 2 1 0 —1
mN+2 4 3 2 1 0 -1 -2
mN+1 4 3 2 [ 0 —-1 -2 -3
mN 4 3 2 1 o -1 —2 -3 -—4
mN—1 3 2 1 0 —1 -2 —3 —4
mN—2 2 1 0 -1 —2 -3 —4
mN—3 1 0 -1 -2 -3 —4
mN—4 0 —-1 -2 -3 —4
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contributing to the 5-18 A meridional arc is enclosed
in a square. The table is drawn for a case when no
values of y or u—v need be considered outside the
range —4 to +4.

The procedure for harmonic analysis used by the
writer is illustrated in Fig. 5. The continuous curve

‘ ﬂ"f(R)
E
Q
/6
' % 2 SR
=y’ s F B
H

Fig. 5. Graphical method for finding real and imaginary parts
of f(R’).

gives the calculated numerical value of the «-helix
form factor, f(R’), plotted against R’, (R’ and &
being on the same scale). The x-helix is thus replaced
by a single effective helix whose form factor is

T(@) = T(R', ¢') = f(R') exp [e(3n~y")] .

The harmonic analysis is most conveniently performed
on the quantity 7'(Q’) = f(R’) exp (—iy’); hence all
the coefficients derived from this must be multiplied
by . The real and imaginary parts of 7"(Q’") are found
by reading from the graph the value of f(R’) at
R’ = C'F = C'Q’', marking off C'G along C'Q’ equal
to EF = f(R’) and noting its & and 7’ components.
Actually it is the vector C'H which represents 7"(Q’),
but C'G may be used if the negative of the 7’ reading
is taken. The point @’ is one of a number which
regularly divide the upper half of the precession circle.
A division into fifteen sections gives ample resolution
for the analysis of the slowly changing quantity
T'(Q'), and has been found convenient to use since
the computation has been done with Beevers-Lipson
strips according to the method of Stokes (1948). If
¢’ and d’ are the cosine and sine coefficients of the real
part of 77(Q’), and ¢’ and d"’ the cosine and sine coef-
ficients of the imaginary part of 7(Q’), then, remem-
bering that T(Q’') = 7"(Q’), the required coefficients
b are given by

by = —4(ep +dp) +Fi(c—dy)
and

b = $di—ci) +Hi(e+dy),

k being positive or zero.

In the present case all d' and all ¢’ are zero so the
above reduce to

b = Hilei—dy), by = bile+dy).
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Comparison of approximate and exact theories

It is of interest to see how the value of F derived
from the approximate formula (11) differs from that
given by the general formula (2). A comparison made
when the structure is a simple coiled-coil will clearly
be valid for the case of a composite minor helix, such
as an «-helix. Using Crick’s description of the coiled
coil, the general formula takes the form of equations
(8) and (9). The Fourier coefficients to be inserted in
the approximate formula (11) can in this case be
found exactly by integration. For the band m = 1,
the form factor is given by

T(@Q) = Jy(27r R’) exp [i(3n—~y")],
r; being the minor helix radius; and
1 0% .
b, = %So 7(Q') exp (¢tkw)dw .

It is seen from Fig. 5 that ¢'Q' = R’, 'S’ = R and,
taking the precession-circle radius as constant,
8'Q = (nfc)sin x, = @, say. Substitute y = a—ow,
z = 2nria, and Z = 27 R; the geometry of triangle
C'Q’S’ then shows that 2nr R’ = (Z22+22—2Zz cos y)}.
Hence the expression for b, becomes

on
by = —;;S J1[(Z2+22—2Zz cos y)t] exp (—iyp’)
o

xexp (—iky) exp (ikx) exp (—3im)dy .
By means of Neumann’s addition theorem the ex-
pansion may be made:
exp (—iyp')J,[(4%+22—2Zz cos y)}]

©
=2 J1+m(Z)Jm(z) €xp [-—-'me] .
m=—00
The integral

1 2n
b=\ Z14n(2)Tn@)
TTdo m

xexp [—iz(k+m)] exp (ikn) exp (—bim)dy
is non-zero only when m+k = 0. Thus the Fourier
coefficients are given simply by

by = J14(Z)J(2) exp (—}im) .

Inserting these in equation (11) gives
F(n+Np) = 2 2 nexp [2ni(n+ Nu)zfc]
i

v
XJ(2nrgR) ., 27ery R)J (2707, (n]c) Sin &)
xexp [1(u—1) (y—@;+in)+in] .
Putting » = p, 1—u+» = ¢ and u—v = s, the above
may be written

F(B,y,lc) = X 2 X X nd,(2nr,R)J,(2nr,R)
i P g s
xJs(2r(n[c)ry sin «) exp [ip(p—@;+47)

+ig(@;—p-+37) +isn+27ilz;/c] , (13)

AN X-RAY STUDY OF x-KERATIN. I

where

! = Np+ng+(n+N)s. (14)
These equations may now be compared with equations
(8) and (9) as applied to continuous coiled coils. The
phase factors become identical upon putting @, = ®;
and @; = 0. Equation (14) is seen to impose the same
restrictions on p, ¢ and s as equation (9), since the
relation between the periodicities in Crick’s geometrical
description of a coiled-coil and that adopted here is
Ny=N, and (N;—N;) = n. Formula (13) does not
differentiate between r; and 7,, and omits the series
involving 4, but these differences are of quite negli-
gible importance. Thus, the only significant difference
is the use of n/c rather than 7/ in the argument of J,
and the effect of this vanishes at the centre of the
band. The approximate reciprocal-lattice construction
for calculating A(j, u), as illustrated in Fig. 3, and
used with a constant radius of precession circle, is seen
to be justified. It is somewhat surprising that the
results of the approximate and exact calculations
correspond so closely, and in particular that they do
not diverge with increasing R.

An application of the approximate theory

Consider, for example, the three-strand cable, shown
schematically in Fig. 6. One turn of each «-helix is

Fig. 6. Schematic representation of the three-strand cable.

shown, projected along its axis. Opaque half circles
represent knobs, clear half-circles represent holes. In
the divided location the quadrant marked with the
dot is one turn higher (i.e. above the plane of the dia-
gram) than that not so marked. For simplicity the
number of locations on each circle is made exactly
seven in the drawing. For perfect packing of the three
«-helices along their lines of contact, knobs and holes
opposing each other should be at the same height.
This condition is fulfilled and the three knob-hole
pairs surrounding the central axis are all at the same
height when & = 10° and the contact radius r, is 4-8 A.
The major helix radius 7, is then 7, sec 80° and equals
approximately 5-5 A. With these values of 7o and o
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Fig. 7. Calculated and observed intensities near the 518 A meridional arc of the x-keratin diffraction pattern.

the z-axis repeat is 197 A. This coincides with the
value of ¢ which permits all the meridional reflections
to be indexed satisfactorily. The 5-18 A arc is the 38th
order of 197 A, so the value of n is 37.

The coordinates used for the «-helix and fC atoms
were those listed by Pauling & Corey (19515) with the
BC in position 2. No account was taken of the rest of
the side chain. Harmonic analysis of the first-layer
form factor was made with Beevers—Lipson strips at
R = 0-025, 0-050, 0:075 and 0-010. It was found that
the only Fourier coefficients having appreciable values
were by, b, and b_,, except at B = 0-025 where b, and
b_, had to be included. The calculated intensities for
the band from g = —5 to y = 45 are shown on the
right side of Fig. 7, the width of the layer lines being
proportional to intensity. On the left are experimen-
tally observed intensity contours taken from diffracto-
meter measurements on Canadian porcupine quill. A
single coiled-coil will give the complete band pattern,
but if coiled-coils are packed together in a regular way
many of the band components will be extinguished.
In the case of the three-strand cable, ¢; = 27/3 and
all z; are zero. Hence the condition y—1 = 3r is im-
posed, r being an integer or zero. The band components
appearing with this restriction are marked by crosses.
It is seen that the 5-18 A meridional reflection is
accounted for satisfactorily; the side-chains would be
expected to produce some redistribution of intensity

on the layer u = 1 which would increase the intensity
at B = 0. The restriction on the values of u required
if the structure consisted solely of three-strand cables
with perfect knob-hole packing of the three component
helices would appear to be rather too stringent. How-
ever, the rapid fade-out of the observed pattern away
from the meridian makes difficult the comparison with
calculated intensities other than in the region near
R =0

The author wishes to thank Dr O. S. Duffendack,
Director, Philips Laboratories, for his interest in this
work.
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