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An X - r a y  S t u d y  of a-Keratin.  I. A General  Diffraction Theory  for, Convoluted 
Chain Structures  and an A p p r o x i m a t e  Theory for Coi led-Coi ls  

BY A. R. LANG* 

Philips Laboratories, Irvington-on-Hudson, New York, U . S . A .  

(Rece.ived 10 June 1955) 

A fibre structure is examined consisting of a periodic distribution of electron density along a.n 
infinite line which is folded or coiled in space in a pattern arbitrarily complex but  repeating 
regularly along the fibre axis. The electron-density distribution on the spiral is expressed as a 
Fourier series, periodic in the distance measured along the line, and the same holds for each of the 
cartesian coordinates of a point of the spiral. The expression for the structure amplitude on any 
layer can be written as a product of Fourier coefficients of these four series. The approximate 
theory for the coiled coil regards the compound helix as a minor helix deformed with the periodicity 
of the major helix, the scattering contribution of each turn of the minor helix being thereby modu- 
lated in phase and amplitude. The diffraction pattern of a three-strand cable composed of al 
helices has been calculated in the region of meridional spacing 6.1-4.7 ~ and shows qualitative 
agreement with the observed poreupine-qtdll pattern. 

I n t r o d u c t i o n  

Paul ing & Corey (1951a) proposed a structure for 
c~-keratin consisting of a-helices packed together in 
a l ignment  with the fibre axis, and Perutz (1951) 
pointed out tha t  the observation of a relat ively strong 
meridional  1.5 /~ reflection in materials  such as horse 
hair  and porcupine quill gave strong support  to this  
idea. On the other hand,  the projection on the fibre 
axis of the electron densi ty  of the a-hel ix shows no 
periodicity corresponding to the helix repeat  distance, 
and so the strong meridional  arc at 5.18 /~, charac- 

teristic of the s-keratin pattern, cannot be explained 
by  the simple model of a-helices in parallel  array. The 
way out of this diff iculty was shown in principle by  
Crick (1952) and Paul ing & Corey (1953), who sug- 
gested tha t  the c~-helix axis was inclined to the fibre 
axis and itself followed a larger helix. I t  is easily seen 
tha t  the projection on to the fibre axis of such a 
coiled-coil s tructure possesses a periodici ty corres- 

* Now at the Division of Engineering and Applied Physics, 
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pending roughly to the a -hehx  repeat,  and  hence will 
give some approach to the  observed meridional  dif- 
fraction pat tern.  The apparen t ly  complex calculation 
of the diffraction pa t te rn  of a structure containing 
coiled-coils can be much simplified by  regarding the  
structure as a grating composed of a repet i t ion of 
single turns  of the minor hel ix (i.e. the  a-helix)  wi th  
a superimposed modulat ion in scattering ampl i tude  
and phase, the modulat ion wavelength being the major  
helix axial-repeat  distance. On this basis the writer 
has derived a simple approximate  theory  for the  rapid  
calculation of ~h¢ meridional and n~ar-meridional dif- 
fraction pat te rn  of coiled-coils assembled in mult i-  
s t rand cables. An exact theory for the calculation of the 
whole diffraction pa t te rn  of coiled coils has  been 
developed independent ly  by  Crick (1953a). 

The present  paper  describes a general  diffract ion 
theory applicable to fibres consisting of atomic chains 
folded in arbi t rar i ly  complex fashion. This reduces to 
Crick's formula  as a special case. An account is then  
given of the approximate  theory. I t  is compared wi th  
the exact  theory,  and applied to calculate the  diffrac- 
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t ion pa t t e rn  given by  a th ree-s t rand  cable of a-helices 
in the  region of the  5-18 A meridional  arc. 

G e n e r a l  d i f f r a c t i o n  t h e o r y  f o r  c o n v o l u t e d  c h a i n s  

In  this discussion a chain s t ruc ture  will be defined as 
a periodic dis tr ibut ion of electron densi ty  along an 
infinite line. Thus, if a pa ramete r  t is t aken  as propor- 
t ional  to the  distance along the  line, the  var ia t ion  of 
scat ter ing power along the  line, measured  in appro- 
pr ia te  units,  m a y  be represented by  the  Fourier  series 

c o  

A 0 = ~ ~ exp (-2:~ipt/ tm),  
p = - - ~  

where tm is the  value of t af ter  which the  dis tr ibut ion 
repeats.  I n  the convoluted chain s t ruc ture  the  infinite 
line is subjected to a three-dimension~l coiling and  
folding of any  complex i ty  provided t h a t  af ter  t in- 
creases by  a finite a m o u n t  t 0 the  configuration repeats.  
Take  any  point  on one such convoluted line as origin, 
and  let the  direction joining this point  with another  
on the  line differing f rom it by  t 0 in t value define the  
z axis of a rec tangular  coordinate system. Usual ly  the  
direction of the  z axis so chosen will be coincident with 
the  fibre axis. I n  the  possible case of a fibre composed 
of a web of several differently convoluted chains, the  
s t ruc ture  m a y  be reduced to one form of chain by  
combining segments  of chains of different forms so 
t h a t  the  whole configurat ion is made  to repeat  in the  
direction of the  fibre axis. 

For  the  line passing th rough  the origin le~ t have  
there  the  value t = 0, and  let z = z~ a t  t -- t o . Then 
the  cons tant  s---zc/t o measures the  average ra te  of 
progression of z with t. The periodic var ia t ion  of the  
x, y and z coordinates due to the  convolutions can 
always be represented by  Fourier  series, most  con- 
venient ly  in the  form of sine and cosine series. Thus, 

OO 

x = .~, (au cos 27~ut/to+b u sin 2~ut/to) , 
u~-O 

oo 

y = ~ (c~ cos 2:~ut/to+d ~ sin 2~ut/to) , (1) 
U ~ 0  

c o  

z = st + ~" (e~ cos 2:~ut/t o +fu sin 27~ut/to) • 
U = 0  

I t  should be remembered  t h a t  these series are no t  
independent ,  since a t  every point  on the  line we have  
~dt ~" = dx~'+dy~'+dz ~, ~ being a constant .  

The t rans form of the  convoluted chain a t  the  point  
(~, ~/, ~) in reciprocal space is 

T(~, r/, ~') -- A ,  exp 2~i[x~+yr~+z~]dt .  
- - C O  

Pu t t i ng  ~9+~7~ = R ~, tan~fl = ~7/~, o~ = 2~ut/t  o, and 
subs t i tu t ing  for x, y and  z f rom equations (1), this 
becomes 

T(R ,  v2, ~) = ~ ~+coA o exp [ 12~iR " ~ ~ (au cos co cos y~ 
d --co 1. ( u =  l 

o9 cos y~÷c~ cos ~o sin yJ+d~ sin 09 sin YJ)// ÷bu s i n  

x e x p  2~i¢ e~ cos oo+f~ sin eo .exp (27det~) 

x exp [2~i(Ra o cos v/+Rc o sin v/+(eo)]dt .  

This m a y  be wri t ten  for short  

T(R, ~o, ~) = An.  A t.  exp (id) exp (2~iet~)dt,  

where d = 2~(.Ra 0 cos ~ + R e .  sin ~+~e . )  and AR and 
A~ are the  other  te rms involving R and  ~, respectively.  
Ai~ and  A~ m a y  be separa ted  into factors,  giving 

c o  

c o  

c o  

= A 1 . A ~ . A  3 . A ~ ,  

and  

A~ = exp 2~i e~ cos eo 

x exp sin o~ = A s. Ae • 

Each  fac tor  Ai(i  = 1, 2, . . . ,  6) is expressible as the  
limit of .an infinite product  of infinite summat ions  
with the  aid of the  relations 

c o  

exp (iv cos 0) = .2~ J~(v) exp mi(O+½zl) 

and  
CO 

exp (iv sin O) = ~ Jm(v) exp mi O . 
m = - - c o  

Thus the  expressions for A~ become 

A1 = I I  ~, [Jm(xdR(au÷du)} 
U-.~I m = - - o o  

× exp {im(2~ut/to-v2+½7~)}], 
o o  o o  

A2 = I I  .~  [Jm{~iR(au-du)}  
U ~ I  m ~ - - o o  

× exp {im(27~ut/to+v2+½z)}], 
c o  o o  

A3 = 1-1 ~Y, [Jm{TdR(bu+cu)} 
U ~ I  m=.---oo 

× exp {im(2xeut/to+v/)}] , 
oO O0 

A4 = 1-1 Z ,  [Jm(xdR(bu-cu)} 
U ~ I  m ~ . - - - ( ~  

× exp (im(2~ut/to--~f)}],  

A G 9  29 
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A 5 = I I  .~, [Jm(2~i$eu)exp {im(2~ut/to+½X~)}], 
u= l  m = ~ o o  

and 
oo co 

A~ -- I I  2," [J~(2ziCf~) exp ~im(2zut/to)}] . 
U ~ I  m ~ - - - o o  

The transform of each A~ is the convolution of the 
transforms of the m-summations computed for every 
value of u; and the required transform of the product 
of all the factors Ai  (i -- 0, 1, . . . ,  6) is the convolu- 
tion of the transform of each Ai. Evaluat ion is simple 
because every term is either constant, or periodic with 
repeat t o or tin, and so its transform reduces to a set of 
Fourier coefficients. Consider A~, for example" the 
integral giving the transform of one term of the sum- 
mation for a particular value of u is 

T~(u, m) = t Jm{z iR(au+d~)}  
,) - -Do 

× exp {im(2nut/to-V2+½70 } exp (2~iet~)dt 

and is non-zero only when ~+um/sto = 0; at  each 
such value of ~ it becomes the Fourier coefficient 
F~(u, m) -- g~{~ iR(au+du)}exp  {im(½~-Ip)}. Likewise, 

T o = I ~ - A o e x p ( 2 ~ i e t C ) d t  is non-zero only when 

~+p/e tm  = O, at which values of $ it reduces to the 
Fourier coefficients 2' 0 = ~ .  Provided tha t  t o and t~ 
are not incommensurable the whole structure repeats 
after a length tt = Mtm = Nto, M and N being integers 
having no common factor. The z-axis repeat distance 
is given by c = ett, hence urn/st o = N u m / c  and p/et~ = 
Mp/c .  The transform T(R,  y~, ~) is then non-zero only 
when ~ = l/c, 1 being an integer or zero. The structure 
amplitude for the layer of index 1 is thus given by the 
products of coefficients 

F(R,  ~, l/c) 
6 ¢~ oo 

= e p l I  I I  2 F~(u(i), m(i ,  u)) exp (i~$), (2) 
i = l  u ( i ) = l  m ( i , u ) = - - o o  

subject to the conditions 

6 c~ 

l + M p + N  ~" .~  u( i )m( i ,  u) = O . (3) 

The coefficients are 

F~(u(1), m(1, u)) -- J,,~(~,~){TdR(a,~(1)+d,,o)) ~ 
x exp {im(1, u)(½~-v2) ~ , 

F~(u(2),  m(2,  u)) = J.<e,~){~iR(a~(e)-d~(~))} 
×exp {i~(2, u)(½~+~)}, 

Fa(u(3), m(3, u)) -- J,Ka, u){giR(bu(a)+c~a))} 
× exp (ira(3, u)y~) , 

F,(u(4),  m(4, u)) = J,n(a,u){xdR(b~c,)-c~a))} 
xexp (--ira(4, u)~) , 

F~(u(5), m(5, u)) = J,K~,~o(2xd(1/c)e~(~)) 
x exp (im (5, u) ½~), 

F~(u(6), ~(6,  u)) = J.~6,~)(2~iq/c)A(~)). 

(4) 

Each order m and harmonic u has been tagged, as 
shown in equations (2), (3) and (4), in order tha t  the 
terms contributing to a given layer may  be identified. 
The coefficients ~p will in general be complex. Two 
special cases of interest are (i), electron density con- 
s tant  along the wire, in which case all ~p are zero 
except @0, and equation (3) reduces to 

6 co 

l+ .~  .~  u( i )m( i ,  u) = 0; 
i=1 u(~)=l 

and (if), electron density concentrated in points spaced 
tm apart,  one such point being at t -- tl, in which case 
~p = C exp (-27dptl / tm),  where C is a constant. 

Expression (2) gives the structure amplitude for 
one convoluted chain. If the structure contains dif- 
ferent types of convoluted chains their scattering 
amplitudes must be calculated separately. A simpler 
procedure may be employed when all the chains are 
similar; in this case a common parameter  t may  be 
used for all chains and the Fourier coefficients a, b, 
etc. will remain unchanged if the periodic variations 
of the x, y and z coordinates of the j t h  chain are ex- 
pressed as Fourier series in t-t.~. Additional generality 
and convenience are obtained if the equations (1) are 
put  in the form 

x -- x i+ .~, [au cos (27eut/to-CPuj) 

+b~ sin (2~ut/t  o -  q~i)] , 
oo 

y = y~+ -~ [cu cos (2~ut/to-q~uj) / (5) 

u=l + du sin (2xlut/t o -  ~ ) ] ,  

I co 

z = e t+z j÷  ~ [e~ cos (2xeut/to-q)~j) 
u = l  

÷fu  sin (27eut/to-q)~j) ] . J 

The coefficients F 1 , . . . ,  F 6 given by equations (4) 
must  now be multiplied by exp (-iraTe1), and the 
phase factor in equation (2) becomes exp (i(~j) with 
(Sj = 2g(Rx j  cos v2÷ R y  j sin yJ+ (1/c)zi). 

As an example of application of the foregoing theory, 
the structure amplitudes for a discontinuous coiled 
coil may  be calculated, using Crick's (1953a) model. 
The coordinates of the major helix are 

x = ro cos (o~6t+~0), 

y = r 0 sin (Wot+q~o) ' i (6) 
z = P(mot /2g)+zo ; 

and those of the minor helix in its own rotat ing frame 
of reference are 

x' = r l  cos (~lt + ~1),  | 
y' = r 1 sin (colt+~l) ' / (7) 

~t  ~ 0 o  

The major helix, which is right-handed, makes N 0 
turns while the minor helix (left-handed) makes _N 1 
turns in its own frame of reference, in the same 
z-distance c. This condition makes - w l / W o  = ~71]N o. 
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There are M point atoms in the repeat c, thus t t = 

to = Mtm. One atom is at  t=tl,  so Qp = Cexp(--ip99M ) 
where 99M = 2z~Mtl/to. The coiled-coil coordinates are 

x = % cos (o~ot + 990) 
+ rl cos [o~ot (N1/N o -  1) t -  99o- 991] 
+A cos [~Oot(N1/No+l)+99o-991], 

y = r o sin (w0t+990) 

- rl sin [COot (N1/N o -  1) t -  99o- 991] 
+ A sin [ogot (N1/N o + 1) + 99o- 991], 

z = P(eoot/27 0 + z o + r 1 sin o~ sin [Wot(N1/No)- 991], 

in which tan  a = 2z~ro/P, rl = ½rl(l+eos a), and A = 
½rl(1-cos a). Identifying the above coordinates with 
the general coordinates of equations (5) enables the 
Fourier coefficients au, b,,, %, etc. to be writ ten down 
by inspection. I t  is seen first tha t  e - og0P/2z, c - N0P 
and t o --2~N0/o9 0, so tha t  2z~ut/t o becomes wout/N o. 
Only four harmonics are active: these are u = N 0, 
N1-No,  N1, and N I + N  o. I t  is convenient to tabulate 
the coefficients as shown (Table 1). 

CO CO CO c o  

F(R,  v/, 1/c) = C Z Z Z Z Jp(2z~Rro) 
p = - - c o  q=--oo  s=.--oo d=- -co  

X J q  (27~R~1) J ,  (2g (1/c)r 1 sin ~) Jd (2zIRA) 

x exp [ip (v,;- 990 + ½zl) + iq( - v/+ q9o + 991 + ½ze) 
+ is (z~ + 991) + id (y; + 991 - 99o + ½zl) - im'99M + 2zdlzo/C], 

(s) 
subject to the conditions 

Nop+(N1-No)q+ZVls+(Nl+ No)s = l + M m '  . (9) 

These equations are identical with Crick's equations 
(13) and (14) if the constant (7 is put  equal to unity,  
except for the phase angles multiplied by q, s and d. 
The discrepancy in the lat ter  has been traced to an 
error in Crick's derivation of his coiled-coil coordinates 
from the major and minor helix coordinates (6) 
and (7).* 

I t  is thus seen tha t  if the x, y and r coordinates of 
the convoluted structure can be expressed in such a 
way tha t  the various multiples of the fundamental  
periodicity can be readily picked out, the expression 
for the structure amplitudes on any layer can be 
writ ten down without further calculation. 

Table 1. Fourier coefficients of coiled coil. 

u =  No N~--No 2V~ NI+No 
Coeff ic ien t  2 '  1 : a u  + d u  2% - -  - -  2/I 
Coef f ic ien t  F~:  a u - - d u  - -  2~1 - -  - -  
Coeff ic ien t  tP a : bu  + Cu . . . .  

Coeff ic ien t  F 4 : b u - -  Cu . . . .  

Coeff ic ien t  F s : eu . . . .  
Coeff ic ien t  / ~  : f u  - -  - -  r 1 s in  c~ - -  
P h a s e  : ~0u - -  ~°o (~°1 21- 990) ~91 (~1 - -  ~90) 

Substi tuting the coefficients from Table 1 in equa- 
tions (4) the series become,* 

CO 

~Y, F1 = .Z, J,nt~vo)(2z~Rro) exp [im (No) (½z~- ~ + 990)] 
m(2%) = - c o  

co  

× ~v J-K~I+~o)(2z~RA) 
m(NI+~VO) = 

× exp [ira (N1 +N0) (½~- ~ -  991 + 990)], 
co 

~v F9 = v J-~-2¢0) (2~Rrl) 
m(N1--NO) = - - co  

and x exp [im (N 1 -  No) (½z~ + v / -  991- 990)] , 

CO 

~ F6 = Z J~v1)(27~(1/c)rl sin a) exp [-ira(N1)991]. 
m(2Vt) =-co 

The phase factor exp (i~) is exp (2zdlzo/c). In order to 
bring the notation into line with Crick's put  p = m', 
m(No) = - p ,  m ( N 1 - N o )  = - q ,  m(N1) = - s ,  and 
m(Nz+No)  = - d .  The expression for the structure 
amplitude then becomes 

* N o t e  t h a t  a c c o r d i n g  to  t h e  n o t a t i o n  a d o p t e d  a b o v e  in 
e q u a t i o n s  ( 2 ) ,  (3), (4), m ( N 1 - - N o ) ,  say ,  does  n o t  s ign i fy  
m ×  ( N I - - N o ) ,  b u t  t h a t  t he  m be longs  to  t he  series whose  
h a r m o n i c  u is N 1 - - N  o. 

A p p r o x i m a t e  t h e o r y  for  c o i l e d  c o i l s  

If the a-helices in a-kerat in are coiled into super- 
helices it  is unlikely tha t  the angle between the a-helix 
axis and the super-helix axis (i.e. the fibre axis) is 
large: the diffraction evidence suggests tha t  it  is about 
10 °. This angle, denoted by a, has been termed by 
Crick the 'pitch angle'. However, in the conventional 
description of helices, such as screw-threads, the term 
'pitch angle' is used for the angle made by a tangent  
to the helix with the plane normal to the helix axis, 
and is thus the complement of c~. With  a-keratin, 
where a is small, no confusion is likely to arise, but  this 
is not the case with structures in which the a-helices 
are coiled into relatively flat super-helices. I t  is there- 
fore here proposed tha t  the angle a, which measures 
the instantaneous angle of tilt  of the minor helix axis 
away from the major helix axis, be called the 'tilt- 
angle'. 

The most detailed diffraction pat terns of c~-keratin 
available show discrete reflexions only on the equator 
and in the meridional and near-meridional region. On 
the equator itself (but not in the near-equatorial 
region) an adequate calculation of the diffraction 
pat tern  of coiled coils may  be made with the assump- 
tion of cylindrical symmetry.  The restriction of the 
remainder of the diffraction pat tern  of interest to the 
near-meridional region, together with the basic notion 
tha t  the a-helix is but  little distorted when i t ' i s  de- 
formed into a coiled coil, provide the physical justifica- 
tion of the approximate diffraction theory described 
below. 

* T h e  wr i t e r  wishes  to  t h a n k  D r  Cr ick  for  t he  l oan  of his 
o r ig ina l  ca l cu la t ions .  

29* 
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I t  will be assumed tha t  all the  a-helices are of the  
same sense and  tha t  t hey  t ry  to pack together so tha t  
side-chains of one hehx  fit  into spaces between side- 
chains of another  helix. This is the concept of 'knobs '  
f i t t ing into 'holes' as proposed by  Crick (1952, 1953b). 
I n  the general  case, if the number  of residues per tu rn  
of the a-hel ix  is not  exact ly  ½n, where n is an integer, 
the  a-helices will have to deform themselves into 
coiled coils in order for f i t t ing to occur. I t  is to be 
expected tha t  several coiled-coils will combine to form 
a mul t i - s t rand  cable. How is this  deformation best 
described geometrical ly ? Consider the simple case of 
a pair  of a-helices of the same sense (left-handed) and 
having  3.6 residues per turn.  Pa r t  of one tu rn  of each 
a-hel ix is represented schemat ical ly  in Fig. l(a),  (b), 

/ , f  \ ~  

Fig. 1. The de fo rmat ion  of a-helices into coiled coils. (a) A 
level w i th  k n o b - h o l e  f i t t ing;  (b) one t u rn  higher,  no defor- 
m a t i o n  and  no f i t ;  (c) the  same level as (b), wi th  the  defor- 
ma t ion  required  to give k n o b - h o l e  fitting..  

(c). An opaque semi-circle represents a knob, an open 
semi-circle, a hole. In  Fig. l(a), a knob on the helix 
whose axis is A fits into a hole of the helix whose axis 
is B. :Now consider the fit  at  one helix-repeat  higher. 
As shown in Fig. l(b), a knob-hole  ma tch  no longer 
occurs. A good fit m a y  be restored by  giving each tu rn  
of each helix a small translation without rotation. A' is 
t rans la ted  to A" ,  and B '  to B" ,  the angle between 
A ' B '  and A " B "  being approximate ly  10 °. The defor- 
mat ion given to each tu rn  m a y  be considered either 
as a small  shear on horizontal planes, in a direction 
normal  to the  line joining the minor  to the major  helix 
axis (which in this  case is the mid-point  of AB) ,  or as 
a t i l t  of indiv idual  turns  so tha t  their  axes follow A A "  
ra ther  t han  A A ' ,  and B B "  ra ther  t han  B B ' ,  at this 
par t icular  level. The lat ter  description is more con- 
venient.  I t  implies a discontinuous deformation of the 

a-hel ix  once per tu rn ;  whereas, if the  deformat ion 
takes place by  rotat ion about  the a-carbon-a tom 
bonds, which can be regarded as forming a universal  
joint  connecting the p lanar  residues, i t  is d is t r ibuted 
over 3.6 points  per tu rn  of the helix, and thus  ap- 
proaches a continuous deformation.  The difference 
between these two models is not  significant since the 
deformation is small. In  the model adopted here, each 
turn,  with its 3.6 residues, retains its physical  iden t i ty  
and orientat ion in space except for the in t roduct ion 
of the small  tilt. This model has the advantage  over 
Crick's model involving two coordinate systems in 
tha t  i t  permits  a smooth passage from an a-hel ix  with 
s traight  axis to either a r ight-handed or lef t -handed 
coiled coil, depending upon whether  there are more or 
fewer t han  3.5 residues per turn,  respectively. 

Z g . H( j ,u )  

x 

Fig. 2. Cartes ian and cyl indrical-polar  coordina te  sys t ems  for  
coiled coils. 

In  the case considered here of a coiled coil formed 
of a lef t -handed minor  helix and a r ight -handed major  
helix, i t  can be seen tha t  when the minor  hel ix crosses 
the line joining the minor helix axis to the  major  helix 
axis its slope is at  a min imum,  and its projection on 
the major  helix axis has m a x i m u m  density.  I t  is con- 
venient  to take the origin of the major  helix at one such 

'node. Thus, referring to Fig. 2, if Oz is the axis of the  
major helix AA*, the axis Ox is chosen so that A, C 
and 0 lie on the same straight  line, A C  point ing 
towards 0. The tu rn  of the minor  helix to which C 
belongs is designated H(0, 0) and its scattering power 
considered lumped at its origin A. Similar ly  the  scat- 
tering power of the next  minor  helix above, H(0, 1), 
is considered concentrated at A ' ;  A A ' =  A ' A " ,  etc. 
The point  C' is one turn  of the minor  helix up from C, 
and A ' C '  lies in a vertical p lane parallel  to AC.  The 
radius of the major  helix is A O  = r o. Consider, next ,  
another  coiled coil. Assume tha t  this  has  the same axis 
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Oz, radius r o and tilt-angle ~. I t  is desirable to choose 
its origin at a recognizable physical feature of one 
turn of its minor helix, i.e. a node. Let this origin be 
at the point B, where B D  lies on the perpendicular 
from Oz. If this is the j th  coiled coil with Oz as axis 
the minor helix whose scattering is considered con- 
centrated at B may be designated H(j ,  0). The co- 
ordinates of H(j ,  0) are (r0, ~i, zi). Let the assemblage 
of coiled-coils have a z-axis repeat distance c. If P is 
the vertical repeat of a major helix and p that  of 
a minor helix (i.e. A A '  projected on Oz), then c = 
np = N P ,  where n and N are integers with no com- 
mon factor. The scattering power of the uth minor 
helix of the j th  major helix, concentrated at the point 
H(j ,  u), may be denoted by A( j ,  u). The coordinates 
of H(j ,  u) are 

Xu = ro cos ~ = r 0 cos (T+Tj), 
Yu = ro sin ~ = r o sin (T+Tj), 
Zu = zj+up,  where T = 27~upN/c. 

The structure amplitude at the reciprocal-lattice point 
(~, ~, ~) due to the n minor helices of the j th  major 
helix contained in the z-axis repeating unit is 

U ~ - - I  

F(j )  = ~, A( j ,  u) exp [2~i(Xu~+y~+z~C)] . 
u = O  

In this expression one may put ~ = 1/c, 1 being zero 
or an integer, since spectra occur only at these values 
of ~. I t  is convenient to introduce the reciprocal- 
lattice polar angle ~, where ~ tan ~ = (~+~)½,  and 
azimuthal angle ~p, where tan ~fl = ~/~. Then the ex- 
pression for the structure amplitude on layer 1 be- 
comes, on substituting for x~, y~ and Zu, 

F(j ,  l) = ~, A( j ,  u) exp [2xd(1/c) 
U 

(r 0 tan ~ cos (y~-~)+zi+up)] .  

Since tan ~ = 2XeroN/c , the above expression may be 
written 

F(j ,  l) = .~  A( j ,  u) exp (2rdlz]/c) exp (2~ilup/c) 
U 

exp (i(1/N) tan a tan Q cos (v/-T)) . 

Putting B = (I/N) tan a tan ~, and making use of the 
expansion 

CO 

exp (ilB cos (v/-q))) = ~, J~(1B) exp [ i~(~-~+½~)]  , 

there is obtained 

n--1 co 
F( j ,  l) -- ~ ,"  ~, A( j ,  u) exp (2rdlzi/c) 

u-~O ~ - ~ - - 0 0  

× exp (2rdlup/c)J,(1B) exp [ i~(~-~+½z)] .  

Since q)= 2~upN/c+q~i, this may be written 

F( j ,  l) = 2," ~, A ( j ,  u) exp (27dlzi/c)J~(1B) 
?% Y 

× exp [2rd(up/c)( / -~N)]  exp [ i~(~-~i+½~)] .  

The quantity A(j, u) is evaluated in the following 
way. Consider reflection by a plane whose normal is 
OQ (Fig. 2). In space reciprocal to one turn of the 
minor helix (reciprocal coordinate axes Of', 0~/', 0~') 
the plane normal OQ makes not the polar angle ~, 
but an angle greater or less than this depending upon 
the orientation of the minor helix axis with respect 
to OQ (Fig. 3). As one turn of the major helix is 

f 
~ t 

/ 

) 

Fig. 3. The  reciprocal- la t t ice  cons t ruc t ion  in c~-helix reciprocal  
space.  

described, OQ will precess about the direction OS, 
where OS has polar angle ~ and the angle between 
OS and OQ is a. The expression for the form factor at 
reciprocal-lattice layer heights corresponding to the 
minor helix repeat-spacing and submultiples thereof 
is given by the simple formula of Cochran, Crick & 
Vand (1952). The effect of the major helix modulation 
is to split each layer into bands of closely spaced 
layers. In practice only the first band is of importance 
in the a-keratin pattern, i.e. that  centred at ~ = n/c. 
Since the minor helix transform varies slowly and 
smoothly with ~ in this region, the convenient ap- 
proximation is employed of using the form factor of 
the minor helix first level to calculate the amplitudes 
of all components of the band. The form-factor values 
used are those lying round the curve traced out by Q 
as it precesses about OS on the first level C'D'E 'F '  
of the minor helix transform. Since the variation of 
the form factor is cyclic, with a fundamental period 
corresponding to one turn of the major helix, it can 
be represented by a Fourier series periodic in T. The 
point Q describes an ellipse on C'D'E 'F '  but at small 
values of Q it may be regarded simply as a circle 
centred at S. This circle will be referred to as the 
precession circle. Its radius for the case of ~ = 0 is 
(n/c) sin c~. The above construction is equivalent to 
considering the axis  0~' as fixed, parallel to 0~, and 
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~' . ~ 
IV' ~=~-~Qx 

~ (hi 

Fig. 4. (a) The rela t ive or ienta t ion of reciprocal- lat t ice layers  of the  coiled coil (0), and  of one t u r n  H(j',  u) of the  minor  
helix of the  coiled coil (j). (b) The  ro ta t ion  of S into S' .  

the plane normal OQ as varying in polar angle and 
azimuth. 

Thus, substituting for A(j,  u) the series 

c o  

.~ a(j, k) exp ( - i kv )  , 
I¢ ~ ----0o 

the expression for the structure amplitude becomes 

F(j ,  l) = exp (2uizj(l/c)) Z Z .~ ,  a(j, k)J,(1B) 
U v k 

×exp [2~iu(p/c)( l -Nv-Nk)]  exp [iv(~-~0j+½ze)] . 

This summation is non-zero only when 

(1-.Nv-.Nk) (p/c) = m ,  

where m is an integer or zero, i.e. 1 = mn+.Nv+Nk.  
Introducing the integer /~ defined by # = v+k, the 
structure amplitude contributed by the j th  compound 
helix to the layer 1 = m n + N #  is given by the ex- 
pression 

CO 

.F(j, mn+Nt t  ) = nexp [2~i(mn + Ntt)zj/c ] .~ {a(j, # - v )  

×J,,[(mn+N#)B] exp [iv(v2-qDj+½7~)] } . (10) 

Hence, if the Fourier coefficients applicable to the 
jth compound helix have been found, the value of F 
is readily calculated by summing appropriate products 
of these with Bessel coefficients. In the region of the 
5.18 J[ meridional arc, m = 1. The argument of the 
Bessel coefficient may be alternatively expressed. 
Since tan ~x = 2~rroN/C and tan 0 = Rc/(mn+Ntt),  we 
have (mn+N#)B = 2gr0R; and so computation is 
simplified if F is calculated along lines of constant R 
rather than constant ~. I t  remains to show how the 
coefficients a ( j , # - v )  are derived from a Fourier 
series independent of j. 

Fig. 4(a) represents a plan of a layer, axes C~ and 
C~, of the compound-helix reciprocal lattice, together 
with the corresponding layer of the transform of the 
minor helix H(j, u) in the correct relative orientation. 
From the definition of the origin of the j th  compound 
helix it follows that  C'~' is directed along BD (Fig. 2) 
and so makes an angle ~-q~i with C~. According to 
the construction shown in Fig. 3, when C'~' and C'V' 
are regarded as fixed in space, the point Q moves round 
the precession circle centre S. Alternatively, when C~ 
and C~ are considered fixed, C' moves round the pre- 
cession circle having its centre at C, SQ and C'G being 
equal and parallel. Fig. 4(b) shows C'S rotated back- 
wards about C' so that  it comes into the position C'S', 
lying along C'~', i.e. C'S rotated through the angle 
- ( u + ~ - ~ . ) .  Suppose T(Q') is the value of the form 
factor of the minor helix at Q' and suppose that  this 
has been expressed as a Fourier series periodic in ~o, 

O0 

T(Q') = ~" bkexp ( - i k w ) .  
k = - - -O0 

The form factor at Q, T(Q), (which is in fact A(j ,  u)) 
is required in terms of a Fourier series periodic in 7. 
Now let ~(~+Y~-~i)  be the factor by which T(Q') 
has to multiplied in order to obtain T(Q). In the case 
of the first-order helix-repeat layer of a left.handed 
helix of radius r, T(R', v2' ) = Jl(2gR'r) exp/(½u-v/ ) ,  
by Coehran et al. (1952), and so ~(~r+~fl-~j) is 
exp [-i(7e+~v-~j)]. From Fig. 4(a) and (b) it is seen 
that  w = ~-~o-½~r = ~ + ~ - ½ ~ - y ~ .  The two Fourier 
series are thus related by the identity 

.~a( j ,  k) exp ( - i k r )  -- ~2(~t+ ~v-~0j) .~ bk exp (-ikeo); 
k k 

hence a(j, k) = b~ exp [i(k-1)(~v-~i+½7~)] exp (-½~t). 

This value of a(j, k) may now be substituted in 
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equation (10) to find the structure amplitude in the 
band m = 1 due to j compound helices in which the 
minor helixes are left-handed" there is obtained 

F ( n + N / z )  = .Z Z n exp [ 2 ~ i ( n + N # ) z i / c ] b ~ , _  , × 

J , [ ( n + N # ) B ] e x p  [i(#-1)(yJ-qj+½:~)] exp (-½:~). (11) 

As a simple illustration of the above formula one may 
calculate the intensity on the meridian at 5.18 X. All J~ 
are zero except J o ( n B ) ,  which is equal to unity. The 
point S' is coincident with C', v 2' =e o, Q ' S ' =  ( n / c ) s i n ~ ,  
and so T ( Q ' ) = J l ( 2 z ~ r ( n / c ) s i n ~ ) e x p [ i ( ½ z - e o ) ] .  Thus 
the only coefficient bk active is b l=J l (2xer (n / c ) s inoQ 
× exp (i½7~). Hence ,u = 1 only, and diffracted inten- 
sity is observed on the single layer n + N ,  the structure 
amplitude being 

F ( n + N )  = .Z nJ l (2 z~r (n / c  ) sin ~) 
J 

× exp [ 2 ~ i ( n + N ) z i / c  ] . (12) 

This equation contains, as to be expected, no phase 
factor involving y~ or ~0j. Since ( n + N ) / c  may be written 
( 1 / p + l / P )  the factor containing zj just expresses the 
manner in which the degree of reinforcement of the 
component compound helices depends upon how their 
origin nodes are distributed over a vertical distance 
which is the z-axis repeat between nodes of any one 
compound helix. As pointed out above, the node is a 
definite physical feature and so the z i coordinates of 
any model are easily found. 

Method of computation 

Formula (11) enables the diffraction pattern to be 
calculated in a number of steps which are independent 
both from the physical and computational point of 
view. The form factor of the c~-helix (with or without 
side chains) is calculated once and for all and plotted 
graphically. When the value of c~ has been decided 
upon, a number of precession circles are drawn at 
various values of R, and harmonic analysis of the 
variation of T(Q ' )  round the circles is made by a 
method such as that  described below. Bessel coeffi- 
cients and Fourier coefficients are conveniently in- 
serted in spaces in a table of the form indicated 
(Table 2); this makes clear which products contribute 
to a given layer line. For example, the sole product 

Table 2. Values  o f  #--~ 

Layer~V --4 --3 --2 --I 0 I 
\ 

raN+ 4 4 3 
m_N + 3 4 3 2 
m N + 2  4 3 2 1 
m N +  1 4 3 2 ~ 0 
m N  4 3 2 1 0 -- 1 
m N - - 1  3 2 1 0 --I --2 
m N - - 2  2 1 0 --1 - -2  --3 
m N - - 3  1 0 --1 --2 --3 --4 
m N - - 4  0 --1 --2 --3 --4 

2 3 4 

2 1 0 
1 0 --I 
0 --I --2 

--I --2 --3 
--2 --3 --4 
--3 --4 
--4 

contributing to the 5.18 ~ meridional arc is enclosed 
in a square. The table is drawn for a case when no 
values of # or /~-~ need be considered outside the 
range - 4  to +4. 

The procedure for harmonic analysis used by the 
writer is illustrated in Fig. 5. The continuous curve 

~',f(n) 

JL  

Fig. 5. Graphical method for finding real and imaginary parts 
of f (R ' ) .  

gives the calculated numerical value of the a-helix 
form factor, f ( R ' ) ,  plotted against R' ,  (R '  and ~' 
being on the same scale),. The ~-helix is thus replaced 
by a single effective helix whose form factor is 

T(Q ' )  = T ( R ' ,  ~v') = f ( R ' )  exp [i(½~-~v')]. 

The harmonic analysis is most conveniently performed 
on the quantity T ' ( Q ' )  = f ( R ' ) e x p  ( - i y / ) ;  hence all 
the coefficients derived from this must be multiplied 
by i. The real and imaginary parts of T ' ( Q ' )  are found 
by reading from the graph the value of f ( R ' )  at 
R '  = C ' F  = C'Q' ,  marking off C'G along C'Q" equal 
to E F  = f ( R ' )  and noting its ~' and U' components. 
Actually it is the vector C ' H  which represents T'(Q'), 
but C'G may be used if the negative of the U' reading 
is taken. The point Q' is one of a number which 
regularly divide the upper half of the precession circle. 
A division into fifteen sections gives ample resolution 
for the analysis of the slowly changing quantity 
T'(Q'), and has been found convenient to use since 
the computation has been done with Beevers-Lipson 
strips according to the method of Stokes (1948). If 
c' and d' are the cosine and sine coefficients of the real 
part of T ' (Q ' ) ,  and c"  and d" the cosine and sine coef- 
ficients of the imaginary part of T'(Q'), then, remem- 
bering that  T ( Q ' )  = i T ' ( Q ' ) ,  the required coefficients 
bk are given by 

r r  , . ~ ' t  ~' - i t t ~  
bk = --½(ck +dk)+ 2~(Ck--ak ) 

and 
b_k = ½(d~-c~')+½i(c~+d'~') ,  

k being positive or zero. 

In the present case all d' and all c" are zero so the 
above reduce to 

bk = ½i(c~.-d~'), b_k = ½i(c~+d~') .  
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Comparison of approximate and exact theories 
I t  is of interest to see how the value of $' derived 
from the approximate formula (11) differs from that  
given by the general formula (2). A comparison made 
when the structure is a simple coiled-coil will dearly 
be valid for the case of a composite minor helix, such 
as an s-helix. Using Crick's description of the coiled 
coil, the general formula takes the form of equations 
(8) and (9). The Fourier coefficients to be inserted in 
the approximate formula (11) can in this case be 
found exactly by integration. For the band m = 1, 
the form factor is given by 

T(Q') = Jl(27~rlR') exp [ i(½~-y/)] ,  

r~ being the minor helix radius; and 

1 I ~ b~. = - ~  o T(Q ) exp (ikoJ)dec . 

I t  is seen from Fig. 5 that  G'Q' = R', C'S' = R and, 
taking the precession-circle radius as constant, 
S'Q' = (n/c) sin ~, = a, say. Substitute Z = g - c ° ,  

= 2grxa, and Z = 2grlR; the geometry of triangle 
zC'Q'S' then shows that  2zr lR '  = (Z~+z~-2Zz cos Z) ½. 
Hence the expression for be becomes 

l S~JI[ (Z~+z~-2Zz  be = ~ cos Z)½] exp ( - i ~ ' )  

× exp ( - i k x )  exp (ikzc) exp (-½izc)d Z . 

By means of Neumann's addition theorem the ex- 
pansion may be made: 

exp (-i~')J~[(Z ~.+z~.-2Zz cos z)½] 
c o  

= .~, Jl+m(Z)J~(z) exp [ - i m g ]  . 
m ~- ----oo 

The integral 

1 12'~ 
b~: = ~ do ~ Jx+m(Z)Jm(z) 

×exp [ - i g ( k + m ) ]  exp (ik~) exp (-½i7~)d g 

is non-zero only when m + k  = 0. Thus the Fourier 
coefficients are given simply by 

bk = Ji_k(Z)Jk(z)  exp ( -½i~) .  

Inserting these in equation (11) gives 

F (n+I /~ )  = ~ ,~ n exp [2~i(n+It t)z j[c ] 

x J,(27troR)Jl_~,+,(2grlR)J~,_,(2~r l(n/c) sin o~) 
× exp [i ( t t -  1) ( ~ -  ~j + ½~) + i~ ] .  

Putting v = T, 1 - t t + v  = q and u - v  = s, the above 
may be @ritten 

F(R, % l/c) = ~.,~ .Y, .~ .~ nJ~(27~roR)Jq(2~rxR ) 
p q s 

× J~ (2u (n/c) rx sin a) exp [ip (v 2 - q~i + ½r~) 

+ iq(q~-v2+ ½~r) + isu + 2~ilz~/c] , (13) 

where 
1 = N p + n q + ( n + N ) s .  (14) 

These equations may now be compared with equations 
(8) and (9) as apphed to continuous coiled coils. The 
phase factors become identical upon putting ~o = ~j 
and ql = 0. Equation (14) is seen to impose the same 
restrictions on p, q and s as equation (9), since the 
relation between the periodicities in Crick's geometrical 
description of a coiled-coil and that  adopted here is 
N o = N, and ( N 1 - N 0 ) =  n. Formula (13) does not 
differentiate between r 1 and rl, and omits the series 
involving A, but these differences are of quite negli- 
gible importance. Thus, the only significant difference 
is the use of n/c rather than 1/$ in the argument of Js, 
and the effect of this vanishes at the centre of the 
band. The approrimate reciprocal-lattice construction 
for calculating A(j ,  u), as illustrated in Fig. 3, and 
used with a constant radius of precession circle, is seen 
to be justified. I t  is somewhat surprising that  the 
results of the approximate and exact calculations 
correspond so closely, and in particular that  they do 
not diverge with increasing R. 

An application of the approximate theory 
Consider, for example, the three-strand cable, shown 
schematically in Fig. 6. One turn of each ~-helix is 

Fig. 6. Schematic representation of the three-strand cable. 

shown, projected along its axis. Opaque half circles 
represent knobs, clear half-circles represent holes. In 
the divided location the quadrant marked with the 
dot is one turn higher (i.e. above the plane of the dia. 
gram) than that  not so marked. For simplicity the 
number of locations on each circle is made exactly 
seven in the drawing. For perfect packing of the three 
s-helices along their lines of contact, knobs and holes 
opposing each other should be at the same height. 
This condition is fulfilled and the three knob-hole 
pairs surrounding the central axis are all at the same 
height when c~ = 10 ° and the contact radius rc is 4.8 A. 
The major helix radius r 0 is then rcsec 30 ° and equals 
approximately 5.5 A. With these values of r 0 and c~ 
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Fig. 7. Calculated and observed intensities near the 5.18 /I~ meridional arc of the o~-keratin diffraction pattern. 

the  z-axis repeat  is 197 Jk. This coincides with the  
value of c which permits  all the  meridional  reflections 
to be indexed satisfactorily.  The 5.18 A arc is the 38th 
order of 197 /~, so the value of n is 37. 

The coordinates used for the s -he l ix  and t ic atoms 
were those listed b y  Paul ing  & Corey (1951b) with the  
tiC in posit ion 2. No account was t aken  of the rest of 
the side chain. J:[armonic analysis  of the  f irst- layer 
form factor was made  with Beevers-Lipson strips at 
R = 0.025, 0.050, 0.075 and  0.010. I t  was found tha t  
the only Fourier  coefficients hav ing  appreciable values 
were b0, b 1 and  b_l, except  at  R = 0-025 where b 2 and 
b_~ had  to be included. The calculated intensit ies for 
the band  from # = - 5  to # = + 5  are shown on the 
r ight  side of Fig. 7, the width  of the  layer  lines being 
proport ional  to intensi ty .  On the  left are experimen- 
t a l ly  observed in tens i ty  contours t aken  from diffracto- 
meter  measurements  on Canadian  porcupine quill. A 
single coiled-coil will give the complete band  pat tern,  
bu t  if coiled-coils are packed together in a regular way  
m a n y  of the  band  components  will be extinguished.  
In  the case of the three-s t rand cable, qj = 2z~/3 and 
all z;- are zero. Hence the  condition # - 1  = 3r is im- 
posed, r being an  integer or zero. The band  components  
appearing wi th  this  restr ict ion are marked  by  crosses. 
I t  is seen tha t  the 5-18 A meridional  reflection is 
accounted for sat isfactori ly;  the side-chains would be 
expected to produce some redis t r ibut ion of in tens i ty  

on the  layer  # = 1 which would increase the  in tens i ty  
at  R = 0. The restrict ion on the values of # required 
if the structure consisted solely of three-s t rand cables 
with perfect knob-hole  packing of the  three component  
helices would appear  to be ra ther  too str ingent.  How- 
ever, the rapid  fade-out of the  observed pa t te rn  away 
from the mer id ian  makes  difficult  the  comparison with 
calculated intensit ies other t han  in the  region near  
R = O .  

The author  wishes to t h a n k  Dr 0.  S. Duffendack,  
Director, Phi l ips  Laboratories,  for his interest  in this  
work. 
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